

higher education & training

Department:

Higher Education and Training
REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ENGINEERING SCIENCE N3

(15070413)

19 November 2019 (X-Paper) 09:00–12:00

REQUIREMENTS:

Properties of water and steam (BOE 173)

Calculators may be used.

This question paper consists of 6 pages, a formula sheet of 2 pages and 1 information sheet.

Copyright reserved

Please turn over

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ENGINEERING SCIENCE N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- Answers must be rounded off to THREE decimal places.
- 5. ALL the calculations should consist of at least the following THREE steps:
 - a. The formula used or the manipulation thereof
 - b. Substitution of the given data in the formula
 - c. The answer with the correct SI unit
- 6. Drawing instruments must be used for all drawings/diagrams. ALL drawings/diagrams must be fully labelled.
- 7. The constant values, as they appear on the attached information sheet, must be used wherever possible.
- 8. Keep subsections of questions together.
- Rule off on completion of each question.
- 10. Use $g = 9.8 \text{ m/s}^2$.
- 11. Write neatly and legibly.

Copyright reserved

Please turn over

QUESTION 1: MOTION, ENERGY AND POWER

- 1.1 Name ONE difference and ONE similarity between *speed* and *velocity*? (2)
- 1.2 A BMW motor car with a mass of 1,2 ton accelerates uniformly from rest up a gradient of 1 in 20 and reaches a speed of 15,5 m/s after 3 minutes.

Calculate:

- 1.2.1 The acceleration of the BMW (2)
- 1.2.2 The kinetic energy the BMW possesses after 3 minutes (2)
- 1.2.3 The gain in potential energy (4)
- 1.3 A flat belt has a speed of 72 km/h. The tension in the tight side is 600 N and the tension ratio 4:1.

Calculate:

- 1.3.1 Tension in the slack side (1)
- 1.3.2 Effective tensile force (1)
- 1.3.3 Power transmitted (2)
- 1.3.4 The velocity ratio if the diameter of the driver pulley is 20 cm and the diameter of the driven pulley is 0.12 m. (2)

QUESTION 2: MOMENTS

- 2.1 State TWO conditions for equilibrium for a number of coplanar forces acting on the same point. (2)
- 2.2 Given a light horizontal beam ABCDEF of a uniform cross-section, loaded as shown:

- 2.2.1 Calculate the reaction of the supports B and E.
- 2.2.2 Draw a shear force diagram, using a suitable scale. Show ALL the main values on the diagram.

(6) **[12]**

(4)

[16]

QUESTION 3: FORCES

What is the relationship between the resultant force and the equilibrant of a 3.1 system of forces? (2)3.2 The following data refer to four forces acting on a point: 40N North 25N West 35N East 30° North 30N East 60° South Calculate: 3.2.1 The sum of the vertical components and state their direction The sum of the horizontal components and state their direction 3.2.2 3.2.3 The magnitude of the resultant force (3×3) (9)The direction of the resultant force of a system of forces acting on a point is 3.3 west 42,7° south, while the sum of the vertical components equals 300N. Calculate the magnitude of the resultant force. (3)[14] **QUESTION 4: FRICTION** 4.1 Give THREE advantages of friction. (3)A body with a mass of 0,6 ton is placed on an incline plane making an angle 4.2 of 25° with the horizontal. The co-efficient of friction is 0,36. A force P, at an angle of 30° to the plane, is required to pull the body UP the plane. Calculate: 4.2.1 Component of P parallel to the plane (1) 4.2.2 Gravitational component parallel to the plane (2)4.2.3 Gravitational component perpendicular to the plane (2)4.2.4 Magnitude of P (5)[13] Copyright reserved Please turn over

QUESTION 5: HEAT

5.1	Define t	Define the term <i>specific heat capacity</i> of a substance. (1			
5.2	6 kg ste °C. The 1,5kJ/kg	el is cooled down in oil and the temperature drops from 900 °C to 27 specific heat capacity of steel is 0,46kJ/kg °C and that of oil is °C.	,		
	Calculat	e the:			
	5.2.1	Quantity of heat lost by the steel	(3)		
	5.2.2	Mass of the oil required if the original temperature of the oil is 20 °C	(3)		
5.3	A fuel with a heat energy value of 32MJ/kg is used in an engine that develops 13kW. The test lasted 30 minutes and a thermal efficiency of 35% was obtained.				
	Calculate	e:			
	5.3.1	The equivalent power of the fuel	(3)		
	5.3.2	The heat energy dissipated by the fuel in MJ	(2)		
	5.3.3	The mass of the fuel used	(2) [14]		
QUEST	TON 6: HY	DRAULICS			
6.1	State Pa	scal's principle in words.	(2)		
6.2	The follow	wing data refer to a single-acting hydraulic press:			
	Force exerted on a ram piston 5200N Force exerted to plunger 365N Diameter of the plunger 8cm Stroke length of plunger piston 0,1m				
	Calculate the following:				
	6.2.1	Diameter of the ram piston	(3)		
	6.2.2	Distance moved by the ram (in mm), after 30 pumping strokes of the plunger piston	(4)		
	6.2.3	Liquid pressure in the system	(3) [12]		
Copyriaht	reserved	Places turn o			

QUESTION 7: ELECTRICITY

7.1	Define Fa	aradays's first law of electrolysis.		(2	
7.2	are conr	s, each with an EMF of 3V and internal resistance of 0,5 Ω per nected in series. The battery is then connected to two pared resistors 4Ω and 6Ω and a 5Ω resistor in series.	cell allel		
	Calculate	e:			
	7.2.1	The total resistance of the circuit		(3)	
	7.2.2	The total current flow		(2)	
	7.2.4	The current through the 4 Ω resistor		(2)	
7.3	The resistance of the heating element of a heater is 60 Ω . The current flowing through the heater is 10 A for 5 hours.				
	Calculate				
	7.3.1	The quantity of heat released			
	7.3.2	The cost if the tariff is 27 cents per kWh (2 >	< 2)	(4) [13]	
QUEST	ION 8: CH	EMISTRY			
8.1	Explain th	ne term reduction as it applies to a chemical reaction		(1)	
8.2	Name TH	REE methods to combat corrosion.		(3)	
8.3	Give the o	chemical formula for sodium hydroxide and sulphuric acid.		(2) [6]	
		тот	AL:	100	

Copyright reserved

ENGINEERING SCIENCE N3

FORMULA SHEET

All the formulae needed are not necessarily included. Any applicable formula may also be used.

They appreciate formula may also be used
$$W = F.s$$

$$W = \rho.V$$

$$P = \frac{W}{t}$$

$$\eta = \frac{Uitset/Output}{Inset/Input} 100\%$$

$$F = m.a$$

$$\mu = \frac{F_{\mu}}{N_R}$$

$$\mu = \tan \Phi$$

$$N_R = F_C \pm F_T sina \dots a = 0$$

$$F_S = wsin\theta$$

$$F_C = wcos\theta$$

$$F_T cosa = F_{\mu} \pm F_S \dots a = 0$$

$$F_e = T_l - T_2$$

$$\frac{T_l}{T_2} = tension \ ratio$$

$$P = F_e \cdot v$$

$$v = \pi \cdot d \cdot n \dots n = \frac{N}{60}$$

$$W_{\mu} = F_{\mu} \cdot s$$

$$\Delta E_p = m.g. \Delta h$$

$$\Delta E_K = \frac{1}{2} \cdot m. \Delta v^2$$

$$Q = I^2 \cdot R \cdot t$$

$$m = I \cdot z \cdot t$$

$$\frac{V_P}{V_S} = \frac{N_P}{N_S} = \frac{I_S}{I_P}$$

 $M = F \perp \perp s$

$$\Sigma CWM = \Sigma ACWM$$

$$P_{ABS} = P_{ATM} + P_{MET}$$

$$P = \delta \times g \times h$$

$$\frac{1}{R_{PAR}} = \frac{1}{R_I} + \dots + \frac{1}{R_n}$$

$$R_{SER} = R_I + \dots R_n$$

$$V_I - V_2 = -e(U_I - U_2)$$

$$V = I \times R$$

Copyright reserved

INFORMATION SHEET PHYSICAL CONSTANTS

QUANTITY	CONSTANTS
Atmospheric pressure	101,3 kPa
Density of copper	8 900 kg/m ³
Density of aluminium	2 770 kg/m ³
Density of gold	19 000 kg/m ³
Density of alcohol (ethyl)	790 kg/m ³
Density of mercury	13 600 kg/m ³
Density of platinum	21 500 kg/m ³
Density of water	1 000 kg/m ³
Density of mineral oil	920 kg/m ³
Density of air	1,05 kg/m ³
Electrochemical equivalent of silver	1,118 mg/C
Electrochemical equivalent of copper	0,329 mg/C
Gravitational acceleration	9,8 m/s ²
Heat value of coal	30 MJ/kg
Heat value of anthracite	35 MJ/kg
Heat value of petrol	45 MJ/kg
Heat value of hydrogen	140 MJ/kg
Linear coefficient of expansion of copper	17 × 10 ⁻⁵ /°C
Linear coefficient of expansion of aluminium	23 × 10 ⁻⁵ /°C
Linear coefficient of expansion of steel	12 × 10 ⁻⁵ /°C
Linear coefficient of expansion of lead	54 × 10 ⁻⁵ /°C
Specific heat capacity of steam	2 100 J/kg°C
Specific heat capacity of water	4 187 J/kg°C
Specific heat capacity of aluminium	900 J/kg°C
Specific heat capacity of oil	2 000 J/kg°C
Specific heat capacity of steel	500 J/kg°C
Specific heat capacity of copper	390 J/kg°C

Copyright reserved